SLOGGING THROUGH THE SWAMPLAND: Weak Gravity and Symmetries

GREGORY J. LOGES

UW-Madison

(F)phenomenal Research Open Graduate Seminars 2020–09–29

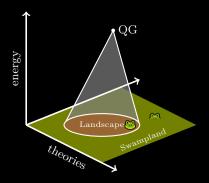
The plan

Part 1: Swamplandology

- ► A Landscape of possibilities
- Getting muddy in the Swampland

Part 2: Weak Gravity

- ▶ Prelude: charged black holes
- ► The Weak Gravity Conjecture
- WGC with thermodynamics and symmetries



$\underline{Part 1}$

Swamplandology

A Landscape of possibilities

String theory (10D)

highly constrained, essentially only five "flavors"

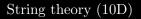
A Landscape of possibilities

highly constrained, essentially only five "flavors"

Choice of 10D "flavor" Choice for extra dimensions Number/locations of D-branes and O-planes Choice of (integer-valued) fluxes

Huge (!) number of possibilities in 4D (chiral matter, dark sector(s), cosmological constant, SUSY?, gauge group, coupling constants, ...)

A Landscape of possibilities



highly constrained, essentially only five "flavors"

Choice of 10D "flavor" Choice for extra dimensions Number/locations of D-branes and O-planes Choice of (integer-valued) fluxes

Huge (!) number of possibilities in 4D (chiral matter, dark sector(s), cosmological constant, SUSY?, gauge group, coupling constants, ...)

Anything goes?

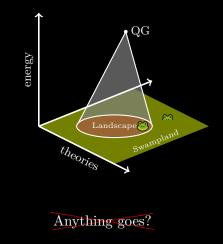
Getting muddy

<u>Observation</u>: explicit string constructions have common features. Is this a coincidence?

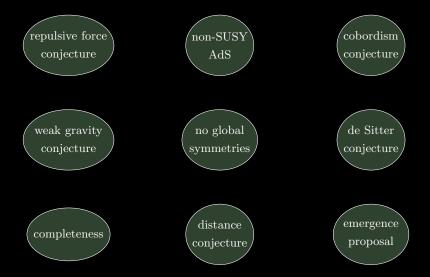
Swampland: those low-energy theories which are incompatible with quantum gravity.

<u>Claim</u>: the Landscape is large, but the Swampland is larger.

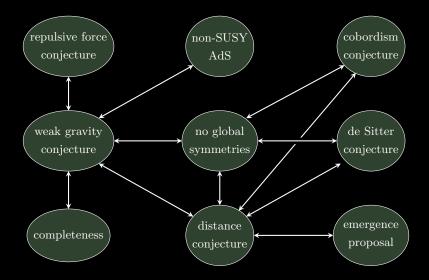
Swampland conjectures: proposed criteria which distinguish swampland from landscape.



A web of conjectures



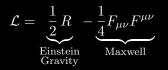
A web of conjectures



$\underline{Part\ 2}$

Weak Gravity

Prelude: charged black holes



		Rotation	
		no	yes
Charge	no	S.	Kerr
	yes	R–N	K–N

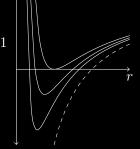
Reissner-Nordström:

- Two horizons: $8\pi r_{\pm} = M \pm \sqrt{M^2 2Q^2}$
- Classical extremality bound: $z \equiv \frac{\sqrt{2}Q}{M} \leq 1$

Extremal black holes (z = 1):

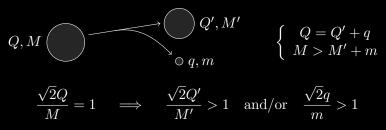
• Vanishing temperature: $T = \frac{r_+ - r_-}{4\pi r_+^2} \to 0$

► Exactly stable



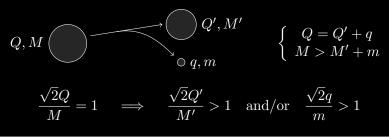
WGC and its variants

Heuristic motivation:



WGC and its variants

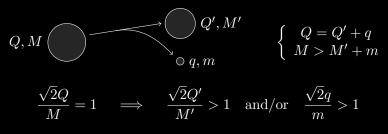
Heuristic motivation:



WGC: \exists state with z > 1

WGC and its variants

Heuristic motivation:



WGC: \exists state with z > 1

mild WGC: extremal black holes have z > 1

WGC: Einstein-Maxwell

Extremality bound:*
$$z \le 1$$
 \iff WGC: $z > 1$

WGC: Einstein-Maxwell

Extremality bound:* $z \le 1$ \iff WGC: z > 1

$$\mathcal{L} = \underbrace{\frac{1}{2}R - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}}_{\text{Einstein-Maxwell}} + \underbrace{\alpha_1(\ldots) + \alpha_2(\ldots) + \alpha_3(\ldots)}_{\text{"higher-derivative terms"}} + \cdots$$

*α*_{1,2,3} capture some aspects of higher-energy physics
Corrected extremality bound: Δz_{ext} = ^{64π²}/_{5O²} (2α₁ − α₃)

However, $2\alpha_1 - \alpha_3 > 0$ is quite generic and follows from unitarity, causality, ...

Q: How does this story change when there are massless scalars?

Q: How does this story change when there are massless scalars?

A: The usual assumptions are not sufficient.

[GL,Noumi,Shiu-19]

Q: How does this story change when there are massless scalars?

A: The usual assumptions are not sufficient.

[GL,Noumi,Shiu-19]

What additional ingredients are needed? Symmetries/dualities are sufficient. [GL,Noumi,Shiu-20]

Q: How does this story change when there are massless scalars?

A: The usual assumptions are not sufficient. [GL,Noumi,Shiu-19]

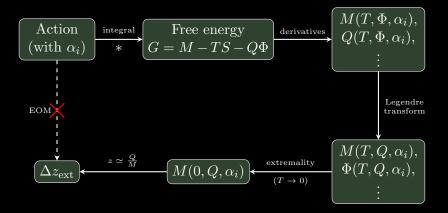
What additional ingredients are needed? Symmetries/dualities are sufficient. [GL,Noumi,Shiu-20]

$$\mathcal{L} = \frac{1}{2}R - \frac{\partial_{\mu}\tau\partial^{\mu}\overline{\tau}}{4(\operatorname{Im}\tau)^{2}} - \frac{1}{2}\operatorname{Im}(\tau F_{\mu\nu}^{-}F^{-\mu\nu}) + \alpha_{i}(\ldots)_{i} + \cdots$$

Two goals: find Δz_{ext} , then understand when $\Delta z_{\text{ext}} > 0$.

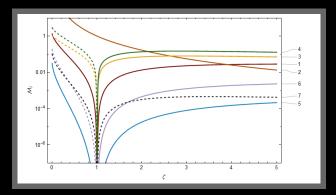
Einstein-Maxwell-dilaton via thermodynamics

Goal 1: find Δz_{ext}



Einstein-Maxwell-dilaton via thermodynamics

Goal 2: when is $\Delta z_{\text{ext}} > 0$?



$$\Delta z_{\rm ext} = \frac{32\pi^2}{5QP} \,\alpha_i \mathcal{M}$$

Unitarity, &c. tell you that $\alpha_1, \alpha_2, \alpha_5, \alpha_7 \ge 0$ (underconstrained)

By assumption h.d. terms are constrained by one of the following symmetries of the two-derivative action.

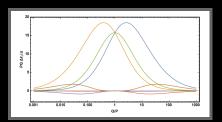
 $SL(2,\mathbb{R})$:

$$\tau \to \frac{a\tau + b}{c\tau + d}, \quad F^+_{\mu\nu} \to (a\tau + b)F^+_{\mu\nu}, \quad F^-_{\mu\nu} \to (c\tau + d)F^-_{\mu\nu}$$

 $O(d, d; \mathbb{R})$: more obscure, also very nonlinear.

Imposing extra structure: $SL(2, \mathbb{R})$ and $O(d, d; \mathbb{R})$

 $\operatorname{SL}(2,\mathbb{R})$



 $O(d, d; \mathbb{R})$

$$\Delta z_{\rm ext} = \frac{32\pi^2}{5QP} \alpha_i \mathcal{M}_i$$

Symmetry + unitarity \Rightarrow WGC

$$\Delta z_{\text{ext}} = \frac{32\pi^2 (2\alpha \pm \beta)}{5P(Q+P)}$$

- Perspective on Landscape vs. Swampland and web of conjectures
- ► Weak Gravity Conjecture: success for Einstein-Maxwell is encouraging but misleading
- ▶ With additional light fields: thermodynamics as a computational tool
- Insufficiency of usual assumptions and resolution with symmetries

Thanks!

